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Afterword

Since the fourth and last edition of Number was published, a half-century ago,

mathematics has advanced with astonishing speed.   Several of the most outstanding

unsolved problems have either been solved or spread roots to new places in nearby fields.

From the time our ancestors first discovered rules for operating with numbers, problems

of mathematics cropped up; some were solved, others not; but, like stones in ancient

Phoenician barley fields, new ones surfaced faster than the old were removed.  Yet,

despite developments in modern number theory and analysis, the content of Number is

still as fresh as when the first edition was published in 1930.   Reading Number today, the

mathematics enthusiast is struck by its lucid language, contemporary relevance, and

intellectual provocation.

Progress in mathematics has accelerated.  On the surface, it may seem as if only a

few famous problems have been solved in the last fifty years.  But modern mathematics

has increasingly become more profound.  Solutions to surface problems—the so-called

“gems”—are inextricably linked to others that are often fields apart, crossing boundaries

by intricately tangled roots coming from one great and stable unifying source.

The ancient problems of doubling of the cube, trisecting the angle, and squaring

the circle remained a mystery for two thousand years, waiting for the brilliant ideas of

modern algebra to uncover their proofs.  In 1837 Pierre Wantzel proved that it is

impossible to duplicate the cube or trisect an arbitrary angle, thereby solving the two

great mysteries of antiquity.  Was that the end of the long story that began with the tale of

the oracle at Delos, which claimed that relief of the devastating plague in Athens would

come when the cubic altar to Apollo would be doubled in size?   Certainly not!
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Wantzel’s solution opened new questions, questions on which simple algebraic criteria

would permit geometric constructions as solutions of rational polynomial equations.

These questions, in turn, opened the far broader question of how to convert geometry to

the theory of equations.

Dantzig focused on the evolution of the number concept to keep his book well

within a manageable scope, staying reasonably clear of the more geometric branches of

mathematics, even though he knew that answers to some of the most elementary

questions of number theory are sometimes best handled through sophisticated geometry.

His book mentions the Goldbach Conjecture, the Twin Prime Conjecture, Fermat’s Last

Theorem; three of many outstanding statements, still unproven at the time of its last

printing.  Fermat’s Last Theorem was solved late in 1994, but the other two conjectures

remain unsolved.

The Twin Prime Conjecture, for example, is one of a large assortment of

problems prompted by asking simple, phenomenological questions about how the

collection of prime numbers is distributed among all natural numbers.  The wonderful

thing about many of the finest questions in number theory is that they can be stated so

simply.  They require little or no technical language to understand and can often attract

the least suspecting visitor, who—if not careful—may find him- or herself absorbed in

endless hours of mathematical diversions.  How many prime numbers are there of the

form n2+1?   How many prime numbers p are there with 2p + 1 being a prime number?

Are there any odd perfect numbers?   (Perfect numbers, like 6, are equal to the sum of

their own divisors.)  We now know that there are none under 300 digits.  But are there
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any?  We know that if one exists at all it must be a sum of squares and at the same time

have at least forty-seven prime factors.   But are there any at all?

There was a time when young, naïve mathematicians (like myself) would worry

about what would happen when all these fine questions—those simply stated

ones—would be solved.  We have learned not to worry.  Not only will there always be

enough fine questions to tempt the dilettante, but each answer will breed a family of new

ones.  Such was certainly the case with Fermat’s Last Theorem, which reared much of

modern number theory; it was also the case with those stubborn Ancient Greek problems,

which formed so much of modern algebra.  We forever find ourselves at the relatively

earlier stages of understanding number.

Fifty years may seem like a long time to wait for solutions to outstanding problems, but

considering that some have waited millennia it seems that plenty has happened in the

mere 2 percent of the time since Euclid’s Elements first appeared and modern

mathematics took off.  First, we’ll look at how computers have affected mathematics.

Then we’ll take a peek at the progress on the Goldbach Conjecture, Fermat’s Last

Theorem, and the Twin Prime Conjecture.

Computers

In 1954, the year the fourth edition of Number was published, MANIAC I (Mathematical

Analyzer, Numerical Integrator and Computer) was the most advanced computer of the

time, using 18,000 vacuum tubes.  (One can only imagine how often the machine broke

down because a single one of the eighteen thousand tubes failed.)   In 1951, without the

use of computers, the forty-four-digit number (2148+1)/17 =
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20988936657440586486151264256610222593863921 was discovered as the largest

prime, but just three years later, with the help of MANIAC I, the largest prime was

discovered to be 22,281 – 1, a number with 687 digits.   Today we know that 224,036,583– 1 is

a prime number.  It contains 7,235,733 digits.

In 1954, graphics interface analogue printers were still on the drawing boards,

though prototypes which moved styluses up, down, right or left according to the

coordinates of input were being built by IBM.  Dantzig does not mention the Riemann-

Zeta function, but the zeros of that interesting function (solutions to the equation z(s) = 0)

have a curious connection with the distribution of prime numbers.  A flood of number

theory theorems would automatically follow from a proof of the Riemann Hypothesis,

which claims that all the zeros of z(s) are complex numbers of the form 1/2 + ai. For one,

in 1962 Wang Yuan showed that if the Riemann Hypothesis is true, then there are

infinitely many primes p such that p and p + 2 are a product of at most three primes.

Riemann was able to compute the first three zeros of the zeta function with astonishing

accuracy by hand.  In 1954, when Alan Turing found 1,054 zeros of the zeta function

without an electronic computer, 1,054 seemed like a huge number of zeros, but now, with

the aid of modern computers, we know more than 1022 zeros and all of them are on the

line having its real part equal to 1/2.  Today, the world’s fastest computer cannot possibly

tell if all zeros of the Riemann-Zeta function lie on the vertical line 1/2 + ai in the

complex plane, but a simple $500 desktop computer can instantly find many that do and

none that do not.

  But computers work with finite numbers and though they can work at

astonishing speeds, those speeds are only finite.  They can help discovery, relieve the
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mathematician of grueling endless computations and—in many cases—suggest

possibilities that could never have been spotted by human reckoning.

Fermat’s Last Theorem

Fermat’s Last Theorem is true.  This 350-year-old problem was solved in 1994 by

Andrew Wiles, with the help of his former student Richard Taylor, using some of the

most beautiful and brilliant ideas in number theory that recognize relationships between

outwardly different mathematical objects coming from remotely different branches of

mathematics.

We cannot presume to give anything near an adequate story here. At most, such a

story can give only a highly brief account, naming very few of the many players who

hammered out impressive ideas, and skipping exciting new dreams and major advances

of the trip, saying nothing about the flying sparks coming from strikes, the brilliant

inroads leading to those strikes, or the countless fires set by those sparks.  The formal

proof is highly technical, but it has been comprehensively outlined in several popular

books listed in the Further Readings section.

The Goldbach Conjecture

We now know a bit more about the Goldbach conjecture, which says that every even

number greater than 2 can be written as a sum of two primes.  Dantzig knew, though

didn’t mention, that every sufficiently large odd number can be written as a sum of three

primes.  The Russian mathematician Ivan Vinogradov proved this in 1937.  Dantzig also

knew the wild but interesting theorem that claimed that every positive integer could be
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written as the sum of not more than 300,000 primes.  Now that may seem like a long way

off from Goldbach’s conjecture, but in fact 300,000 is a lot less than infinity!  Lev

Shnirelmann, another Russian, proved it in 1931.  Soon after, Vinogradov used methods

of Hardy, Littlewood and Ramanujan to prove that any sufficiently large number could be

written as a sum of four primes.  In more precise terms, it means that there exists some

number N such that any integer greater than N can be written as a sum of four primes.

This brought down the number of primes in the sum at the expense of the size of the

number for which the conjecture would be true.

Vinogradov proved both theorems by exhibiting a contradiction from the

assumption that infinitely many integers cannot be written as a sum of four primes.  His

proof could not specify how large N had to be, but in 1956, K.G. Borodzkin showed that

N had only to be greater than 104,00,8,660, a number with more than four million digits.   It

is now known that “almost all” even numbers can be written as the sum of two primes.

“Almost all” here means that the percentage of even numbers under N for which the

Goldbach conjectures are true tends toward 100 as N grows large.  Just after the last

printing of Number, there was a flurry of theorems closing in on the classical Goldbach

Conjecture.  First, it was proven that every sufficiently large even integer is the sum of a

prime and a product of at most nine primes.  As the years went by, the product was

reduced, first to 5, then to 4, then to 3 and finally to 2.  We now know that every

sufficiently large even integer is the sum of a prime and the product of two primes.  We

also now know that one Goldbach variation is true: with a finite number of exceptions,

every even number is a sum of a pair of twin primes.
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Twin Primes

It is still not known whether or not there are an infinite number of twin primes, but it

seems certain that there are.  Perhaps the answer is beyond the current resources of

mathematics.  But there is another, stronger twin prime conjecture which states that the

number of twin primes less than x grows close to another fully calculable number that

depends on x.  Clearly, this strong twin prime conjecture implies the usual twin prime

conjecture.   The first few pairs of twin primes are (3,5), (5,7), (11,13), (17,19), (29,31),

(41,43), (59,61), (71,73), (101,103).  Today, the largest known twin primes have more

than 24,000 digits.  It is interesting to note that in 1995 T. R. Nicely used the twin primes

824,633,702,441 and 824,633,702,443 to discover a flaw in the

IntelPentiummicroprocessor.

As with the Goldbach Conjecture, after the last edition of Number was published,

a flood of theorems converged toward the twin prime conjecture.   Since 1919 we knew

that there are infinitely many numbers k such that both k and k + 2 are products of at most

nine primes.    Just after the last edition of Number, it was discovered that k and k + 2 are

products of at most three primes.

Computer programmers building tests, giving machines heated workouts, are

hitting many of these conjectures, optimistically searching for more twin primes or zeros

of the zeta function.   Why do they bother?   No matter how many twin primes or zeros

they find, they could never prove the conjectures that way.   They are not trying to prove

anything, but rather trying to display what theorists believe exists.  Each new find

contributes to confidence in the conjecture.  Pessimists would hope to find a zero of the

zeta function off the magic line to give a counterexample.  That’s possible.  But if the
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first 1022 zeros follow Riemann’s prediction, how likely would it be that the next will

not?  And then we must ask this question: Riemann checked only the first three zeros, so

how could he have possibly known that they would all lie on the line with real part equal

to 1/2?  Answer:  He knew something about the character, purpose and destination of the

whole beast, not just what it is when it stops to pick up another zero.

This limited selection is a sampling of some of the countless jewels of mathematics that

were solved, advanced or remained too tough to crack in the past fifty years.  The choices

here are limited to the subjects treated in Number and hence more connected to the field

of number theory.  However, readers of Number should be aware that though few of the

prize problems mentioned in Number have been solved, the past fifty years of attempts at

solving problems like them have given us a higher—much higher—comprehension of the

things we do when we do mathematics.  We now see it all coming from that one great

and stable unifying source—the thing that is mathematics.  This viewpoint was

unavailable to Dantzig and other mathematicians working in the first half of the twentieth

century.

We know also—just as Dantzig did back in 1954—that great theorems of

mathematics tidily unveil themselves in one branch to cast teasing silhouettes on delicate

curtains separating others.  Perhaps some curtains will gently separate in the breeze of the

next fifty years.


